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In this paper, we study the optimization problem of an unregulated air carrier which is given 
the exclusive right to satisfy demand for air travel between any pair of cities. It chooses a network 
of connections and a set of prices to maximize profits. Thus, both network design and prices are 
endogenous. We characterize the solution to this optimization problem when demands and costs 
are symmetric. Our main result is that, if there are economies of density in the number of individuals 
travelling between two directly connected cities, the optimal network is either a hub of size n- 1 
or one in which every pair of cities is connected directly. 

1. INTRODUCTION 

Prior to deregulation, the Civil Aeronautics Board (CAB) in the United States was empow- 
ered to supervise and control entry into the airline industry, the cities served, and the rates 
charged. In particular, if an air carrier wanted to supply air transport between cities, it 
first had to apply to the Board for a route certificate. The certificate entitled the air carrier 
to service a named set of cities arranged sequentially. Approval of the application was 
based primarily on "public convenience and necessity". In many instances, the certificate 
was a monopoly grant, since price regulation presumably made competition unnecessary. 
In fact, the CAB would often implicitly agree to protect future revenue of certificate 
holders from the effects of competition by not issuing more than one route certificate. 
This regulatory process resulted in networks comprised of several linear segments, pieced 
together over time (see Tretheway (1991) for details). 

The Airline Deregulation Act of October, 1978 changed the circumstances under 
which air carriers competed with each other. It allowed air carriers to fly when and where 
they like and to set their own fares. In an excellent article, Levine (1987) reviews the 
subsequent changes in the industry and examines some of deregulation's unpredicted 
consequences: hub-spoke networks, complicated fare structures, frequent flyer pro- 
grammes, the enhanced role of travel agencies and computer reservation systems, failure 
of new entrants, vertical integration, and mergers. He argues convincingly that neither a 
simple theory of perfect competition nor its more sophisticated version, contestability 
theory, is able to explain any of these phenomena. He concludes that they are the result 
of air carriers exploiting scale economies and strategic advantages that they could not 
pursue under regulation. 

This paper focuses on the effect of scale economies on the structure of networks. 
Given the freedom to choose its own route structure and prices, air carriers transformed 
their networks into hub-spoke networks. Many analysts believe that the main reason for 
this transformation is economies of density in route costs (e.g., Bailey and Panzar (1981), 
Keeler (1972), and Caves, Christianson, and Tretheway (1984)). This occurs when costs 
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per passenger on a route declines with the number of passengers travelling on that route. 
The hub-spoke network possesses higher traffic densities than larger networks with more 
direct connections. The distance travelled per passenger is usually longer, since most 
travellers have to travel two connections to reach their destination instead of one. But, if 
economies of density are sufficiently large, the total costs of satisfying a given set of travel 
demands may be lower in the hub-spoke network than in a point-to-point network. 

Our objective in this paper is to formalize the above argument in the context of a 
monopoly. One firm is given the exclusive right to satisfy the demand for air travel between 
any pair of n cities. Its problem is to choose prices for travelling between city pairs that 
are connected, a network to connect city pairs, and an allocation of travellers to the paths 
which connect city pairs. Thus, network design, flows, and prices are endogenous. In 
particular, we do not restrict the set of networks to hub-spoke or point-to-point networks, 
but permit the monopolist to choose any pattern of connections among the cities. We then 
investigate necessary and sufficient conditions for hub-spoke networks to be a solution. Our 
main result is that, if there are economies of density in the total number of individuals 
travelling between a pair of directly connected cities, the optimal network when demands 
and costs are symmetric is either a hub of size n - 1 or a point-to-point network. 

Our approach differs from that of operations research. This literature is primarily 
interested in finding an algorithm which determines, for any exogenously specified set of 
flows and unit costs, a network that minimizes total costs subject to the constraint that 
the flow demands for each city-pair are satisfied. By contrast, we endogenize the quantity 
flows through prices, and seek conditions on demands and costs under which the optimal 
network has a simple geometric structure, such as the hub-spoke network. 

In the economics literature, Berechman and Shy (1991) study a three-city example in 
which they compare the profitability of a hub network to a point-to-point network, and 
Brueckner and Spiller (1991a, b) study optimal pricing in a given network. The more 
substantive work is by Starr and Stinchcombe (1992), who have been working indepen- 
dently from us. They are also interested in identifying conditions under which hub-spoke 
networks are optimal for a monopolist. Their model differs from ours in several respects. 
Following the tradition in operations research, they implicitly assume that prices are 
exogenous by assuming that quantity flows between city-pairs are fixed. More importantly, 
they restrict their analysis to linear cost functions in which either fixed costs or variable 
costs are small. We consider a more general class of cost functions. Finally, they consider 
a different type of fixed cost, which can lead to different results. 

There is an extensive empirical literature on the airline industry which tries to measure 
the effect of network characteristics and number of competitors on prices. Examples of 
this work inlcude Bornstein (1989, 1990), Morrison and Winston (1990), Berry (1992), 
Brueckner, Dyer, and Spiller (1990) and Brueckner and Spiller (1991a, b). A recent survey 
of this literature can be found in Bornstein (1992). 

The paper is organized as follows. The model is introduced in the next section. In 
Section 3, we characterize the solution to the monopoly problem when there are economies 
of density and discuss the two main assumptions, the aggregation of directional flows and 
symmetric demands. Section 4 consists of two examples. Concluding remarks follow in 
Section 5. Formal proofs of our results are presented in the appendix. 

2. THE OPTIMIZATION PROBLEM 

In this section we formalize the optimization problem of the monopolist. The basic compo- 
nents of the model are the network, the demands, network flows, and costs. We introduce 
and discuss each component in turn. 
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2.1. Networks 

There is a set N= {1,2, . . . ,n) of n>=3 distinct cities, and individuals living in each city 
who wish to travel one-way to other cities in N. The assumption of one-way travel is to 
simplify notation and interpretation. The results in this paper also hold for two-way travel. 
In what follows, subscripts g, h, g', h' shall be used to index cities. 

In choosing to connect a pair of cities, the monopolist has to decide whether to 
establish a direct connection between the pair of cities or to connect them indirectly through 
a sequence of direct connections. A direct connection involves the acquisition of airport 
space and associated facilities at each endpoint city which permits the possibility of travel 
between them, from city g to city h and vice versa. A network is a set of direct connections. 
Specifically, it is a function X: N x N+{O, 1) such that X(g, h) =X(h, g), and 

1 if there is a direct connection between cities g and h, g #h, 

0 otherwise. 

Note that establishing a direct connection between cities g and h does not imply that the 
number of travellers from g to h is the same as the number from h to g. As we shall see later, 
this depends critically upon the structure of costs. The total number of direct connections 
associated with Xis given by m(X) where m(X) =XI,xg,,X(g, h). For notational simplic- 
ity, we will often refer to m(X) as m. 

A network induces a set of connections between city pairs. A sequence 
a = (nl,n2, . . . ,n,+ of distinct cities such that nl =g, n,+ 1 =h and X(n,, n,+ = 1 for 
t = 1, . . ,z, is called a path between g and h. The length of the path is z, the number of 
connections. We denote by a-' the path (n ,+~ ,  n,, . . .,nl). Of course, there may be more 
than one path between cities g and h. The set of all such paths is denoted by Lgl,. 

Definition 1. A pair of cities (g, h) is connected if there exists a path between g 
and h. 

One class of networks that is worth singling out is the set of networks in which 
passengers can travel from any city g to any other city h. 

Definition 2. A network of X is connected if every pair of cities is connected. 

Note that a connected network does not imply that every city is directly connected to 
every other city. 

In what follows, two particular types of networks will receive special attention. 

Definition 3. A network of X is called a point-to-point network if X(g, h) = 1 for any 
g, EN, g#h. 

Dejnition 4. A network Xis called a hub-spoke network of size m(X) g n  1 if 3 h ~  - N 
such that xgX(g, h) =m(X). 

Definition 3 implies that in a point-to-point network every city is directly connected to 
every other city. Definition 4 implies that in a hub-spoke network city h is connected 
directly to m other cities, and that these cities are in turn connected to each other only 
through city h. Clearly, a hub which is connected has to be of size n - 1. 
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2.2. Demand 

To travel in the network, an individual must purchase a ticket from the monopolist. A 
ticket specifies a travel path, and its price depends upon the origin and destination cities.' 
Thus, a price conjguration P for a network X is a mapping that assigns for each city-pair 
(g, h), g # h, a non-negative number Pgll.If there is no path connecting cities g and h, then 
P&is defined to be infinite. 

We shall assume that tickets can be used only by the traveller to whom it is issued. 
It cannot be transferred in whole or in part to other travellers. This is in accord with 
current airline practices. For a moment, we shall also assume that consumers cannot 
arbitrage the difference between the price of a route and the prices of its sub-routes by 
purchasing separate tickets for each sub-route. Later we show that, under mild conditions 
on the revenue function, the arbitrage constraint is not binding at the set of optimal 
choices. Together, these two assumptions imply that the monopolist can discriminate 
among consumers based upon their origin and destination. 

A price configuration P determines the number of individuals who wish to travel 
between each pair of cities in the network. Each set of travellers is indexed by their origin 
and destination cities. Thus, the set of g - h  traveller refers to individuals who begin their 
trip in city g and end it in city h. We let qgll denote their number. Demand in the g - h 
market is given by D(pgll), where pgh is the price of a ticket to travel from city g to city 
h. Demand is continuous and strictly decreasing on an interval [0, where D(P) =0, and 
zero at higher prices. The inverse demand function is denoted by P(qgll). Revenue in the 
g -h market can then be written as R(qgn) =P(qgh)qgl1. 

This specification of demands abstracts from reality in several ways. Demand in each 
city-pair market is assumed to be independent of prices in other city-pair markets. The 
idea here is that customers who wish to travel from city g to city h have no desire to travel 
anywhere else. We have also ignored the possibility of price discrimination within a market. 
In practise, of course, air carriers can and do discriminate among groups of travellers in 
a city-pair market using fare restrictions, offering lower price to those who are willing to 
pay in advance, stay a weekend, and risk not being reimbursed if they miss their flight.* 
Finally, we have assumed that customers care only about reaching their destination and 
the price of the trip, not how this destination is reached. In particularly, they are indiffferent 
to the number and distance of the connections t ra~elled.~ This assumption can be relaxed 
to admit preferences which depend upon the number of stops in the obvious way. 

The above assumptions are made primarily to focus the analysis on economies of 
density and inter-market price discrimination. A more substantive assumption is that the 
demand functions in the city-pair markets are identical. This is essentially equivalent to 
assuming that the cities are similar in size. In general, the structure of optimal networks 
is determined by the pattern of demands across city-pair markets. As we shall see later in 
Section 3.4 if demands are allowed to vary arbitrarily across city-pairs, very little can be 
said. 

1 .  We do not allow the monopolist to charge different prices for different paths of travel between pairs 
of cities. 

2. Business people typically want to minimize time spent flying and waiting in airports and are more likely 
to experience changes in their schedules. The leisure traveller is far less sensitive to the time factor, but more 
sensitive about price. For example, in their study of U.S. travel demand, Morrison and Whinston (1986) found 
that doubling the frequency of flights would increase demand by business travellers by 21%. For leisure travellers, 
the increase would be only 5%. Price elasticities for the U.S. business and leisure travellers were estimated by 
Gillen, Oum and Noble (1986) to be 1.15 and 1.5. respectively. 

3. Tretheway (1991) uses estimates from Kanafani and Ghobrial (1985) and De Vany (1974) to argue 
that the average traveller is willing to pay between $20-$30 more for a non-stop flight than a one-stop flight. 
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2.3. Flows 

In hub networks, there is a unique path connecting each pair of cities. Consequently, 
everyone travelling from city g to city h must have the same itinerary. However, for other 
networks, there may be multiple paths connecting a pair of cities. In these instances, there 
is an additional dimension of choice: which path should travellers follow? We shall initially 
assume that the monopolist has the power to choose the paths that individuals travel. 
This assumption appears quite strong. However, we shall subsequently show that, in the 
optimal network, no one has an incentive to choose a path different from the one assigned 
to her by the monopolist. 

The problem of allocating flows does not arise if transport costs are proportional to 
the number of travellers. In that case, network costs are independent of how flows are 
allocated across paths. But, in determining the conditions under which hub-spoke networks 
are likely to arise, it is important not to restrict the analysis a priori to linear cost functions. 
With non-linear costs, the choice of path affects network costs, so it is necessary to 
formalize this choice. This requires some additional notation. 

For a connected pair of cities (g, h), let A,/, denote a probability distribution over 
L,!,, and let Agl,(a) be the proportion of g -  h travellers that the monopolist allocates to 
path UEL,I,. A $ow conjguration A for a network X is a mapping that assigns for each 
connected city-pair (g, h), g f h, a probability distribution A,/, . 

Using this notation, we can now define the flows on each direct connection. We 
distinguish flows by direction. For each (g, h) such that X(g, h) = 1, let y,Cn,(g, h) be the 
proportion g' -h' travellers who use (g, h) associated with Ag./,,. The set of origin-destina- 
tion pairs for travellers that use (g, h) is then given by Dgh = h) > 0).{(gt, ht) EN x Nl ~ , , ~ ' ( g ,  
Given a price configuration P and a flow configuration A, the total flow from city g to 
city h is defined as 

Note that there may not be any relation between qg/, and Qg/, . The set of g -  h travellers 
may follow a path that does not involve the direct connection between these two cities. 

2.4. Costs 

There are basically two kinds of costs involved in establishing a direct connection between 
two cities. Station and ground site costs, ticketing and promotion, and administration 
costs are more or less independent of the total volume of traffic on a particular connection. 
We represent such costs by F. According to industry reports, these costs represent approxi- 
mately 40-50% of air carrier's total costs. Note that, given our definition of a network, 
the payment of Festablishes the possibility of travelling in both directions on a connection. 

The remaining costs involve aircraft leasing and operating costs. These typically 
depend upon the number and sizes of the aircraft required to service the number of 
travellers travelling in either direction on the connection. (Note that a connection does 
not imply one flight in each direction!) In general, these costs may depend on the composi- 
tion of the flow travelling each way on the connection. However, we shall assume that all 
sets of travellers travelling in the same direction on a direct connection can be aggregated, 
regardless of destination or origin. We also ignore any differences between city-pairs by 
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assuming that costs are identical across connection^.^ Variable costs for a direct connection 
between cities g and h can then be expressed as V(QBh, QI,J.' 

Tretheway (1991) argues that there are substantial economies of scale in aircraft size. 
Both leasing prices and fuel costs are strictly concave in size, at least for jet aircraft. Unit 
labour cost are clearly declining in size, since there is only one pilot and co-pilot for every 
aircraft. This suggests that V is likely to be strictly concave for connections with traffic 
densities that require only one a i r ~ l a n e . ~  For connections with larger densities, the indivisi- 
bilities associated with the number of aircraft are likely to be less important, so marginal 
costs in these instances may be approximately constant. 

We denote total costs of a connection as the sum of fixed costs and variable costs, 

We assume that V( . , ) is symmetric with V(0,O) =0. In addition, we impose the regular- 
ity conditions that it is continuous and strictly increasing in (Q, Q'). 

Definition 5 .  A network exhibits economies of density if C(8Q, 8Q') <8C(Q, Q') for 
all 8 > 1 and for all (Q, Q') #(O, 0). 

The definition of economies of density is equivalent to the condition that average costs of 
a direct connection decreases with proportionate increases in both flows on that connec- 
tion. It also implies that C(Q, Q')/Q is decreasing in Q for all Q'. Finally, it is straight- 
forward to show that concavity of Cimplies economies of density. Note that the economies 
of density can arise from two sources: spreading fixed costs over a larger volume of 
passengers or declining marginal costs. 

Following the literature, we shall assume that airline networks exhibit economies of 
density. 

2.5. The optimization problem 

We can now formally state the monopolist's optimization problem. It consists of choosing 
a triple (X, P,A) to maximize 

The first term simply sums up the total revenues which the monopolist can collect from 
each market. The second and the third terms represent the total costs of connecting up 
city pairs. We denote the maximized value of (1) by II(F),  which we assume is positive 
for some positive F. This rules out the null network in which the monopolist does not 
service any of the markets. 

4. This is more reasonable than might first appear, since approximately 60% of the fuel costs of a flight 
are incurred in take-off and landing. Consequently, distance is not as important a factor in costs as it is in 
demand. 

5. Implicit in this form of aggregation is the assumption that scheduling problems can be ignored. For 
example, consider a point-to-point network with three cities in which travellers always move in the same (clock- 
wise or counterclockwise) direction. Then, on each outgoing flight, there are three sets of customers. However, 
it is clearly impossible to stagger the times of the flights so that every plane is indeed carrying the three sets of 
travellers. 

6. The Boeing 747 has a seating capacity of 500, and is the largest commercial aircraft currently available. 
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3. OPTIMAL NETWORKS 

In this section we characterize the solution to the optimization problem when there are 
economies of density. We first present the main theorems and the steps involved in proving 
them. The analysis assumes that the monopolist can discriminate perfectly across city-pair 
markets. We then discuss the plausibility of this assumption, that is, whether travellers 
are willing to identify themselves in the optimal network by purchasing the appropriate 
city-pair ticket. Finally, we discuss the key assumptions. 

3.1. The main results 

We begin by examining a polar case in which fixed costs are positive but variable costs 
are zero. Our first result is on the number of connections required to service all of the 
markets. 

Lemma 1. Suppose X is a network such that m(X) 5n - 1. Then the maximum number 
of connected city pairs is m(m + 1). 

The effect of fixed costs on the size of the networks captured by the following theorem, 
which can easily be established as an implication of Lemma 1. To state the theorem, let 
F= sup{F: n ( F )2 0 )  be the highest fixed cost that allows the firm to attain non-negative 
profits, and let P(X) and A(X) denote an optimal price and flow configuration for 
network X. 

Theorem 1. Suppose V(Q, Q') = O  for all (Q, Q'). Z~FE(O,6,(X, P(X), A(X)) max-
imizes (1) if and only if X is a connected network with m(X) =n - 1 .  

The intuition is as follows. If variable costs are zero, profits in each market are 
independent of prices set in the other markets. Consequently, the optimal pricing policy 
is to charge the revenue-maximizing price in every market serviced by the network. Given 
this configuration, the monopolist wants to service all n(n- 1) markets as long as fixed 
costs are not too high. It then follows from Lemma 1 that the smallest network which 
achieves this objective consists of n - 1 connections. 

Economies of density give the monopolist an incentive to concentrate the flow of 
traffic on a small number of connections. Theorm 1 formalizes this intuition for a special 
form of concavity. However, it fails to justify the hub network, since the optimal config- 
uration is not unique. A hub of size n- 1 is optimal, but so is the linear or "snake" 
configuration in which cities g and g+ 1 are directly connected. There are many other 
optimal configurations including multiple hubs. 

The indeterminacy in network structure arises for two reasons: variable costs are zero 
and travellers are indifferent to the particular path of travel between their origin and 
destination cities. If travellers dislike stops, then a connected hub is the uniqe optimal 
network. This is established as an implication of the following lemma. 

Lemma 2. Suppose that X D a connected network and that m(X) =n - 1. Then no 
path in X has more than two direct connections if and only i f  X is a hub. 
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Lemma 2 also implies that, if variable costs are positive, then the hub of size n - I is 
optimal among the set of networks with exactly n - 1 connections.' However, in general, 
it may no longer be optimal for the monopolist to choose a network of size n- 1.' To 
obtain stronger results, it is necessary to assume that V exhibits economies of density. As 
we shall see, however, it is not sufficient. We shall need to make additional restrictions, 
namely, that variable costs depend upon the sum of the directional forms. This additvity 
assumption is quite strong. We explore ways of relaxing this restriction later. 

The theorem below characterizes the solution to the monopolist's optimization prob- 
lem under these cost conditions. To state the theorem, we require some additional notation. 
Given a real number A, define F A  = {FE[O,F ) : F <  A) and I;*' = {FE[O,F ) : F >  A). Notice 
that, for ASO, FAis empty, and for A 2F, F~is empty. 

Theorem 2. Suppose V(Q, Q') =4 (Q+ Q'), where 4 is concave and strictly increasing. 
Then there exists a constant A such that: 

(i) For FEFA, (X, P(X), A(X)) is an optimal conjiguration ifand only ifX is a point- 
to-point network; 

(ii) For E P ,  (X, P(X), A(X)) is an optimal conjiguration if and only i f X  is a hub 
network of size n - 1. 

The value of A is defined in the proof of the theorem. When A is positive, it represents 
the level of fixed costs at which the hub and point-to-point networks are equally profitable. 
However, A can be negative when marginal costs are small at relatively low denstiies. In 
this case, the hub network is optimal even though F is zero. 

The proof of the theorem requires a number of steps. We first determine the optimal 
flow configuration in a network. 

Lemma 3. Suppose V(Q, Q') =4(Q+ Q') and 4 is concave. Then, given any X and P 
there is a cost-mininzizing allocation of flows A such that, for each pair {g, h) for which 
Lgh#4: 

(i) AgIl(a)= 1 for sonze a E LglI; 
(ii) if Agll(a) = 1, then ~~ , , ( a - ' )  = 1 ; 

(iii) if 	 AgA(a)= 1, where a = { n ~,nz, . . ,n:), then An,,,({nt, nt+ I , . . ,n,) = 1 for 
l S t < v S z .  

Part (i) of Lemma 3 states that all g-h travellers use the same path. Part (ii) states 
h -g travellers use the inverse path of g-lz travellers. Part (iii) states that, if g -h travellers 
stop in another city h' en route to city h, then individuals who live in city h' and who wish 
to travel to another city g' on the path a, must do so using the same sequence of connections 
as the g-h travellers. Note that it implies that everyone who travels from city g to city 
h, regardless of origin and destination, uses the same path as the g-h customers. This in 
turn means that, in an optimal network, if cities g and h are directly connected, then the 
g -  h and h -g customers travel on the direct connection. (Otherwise, the connection can 
be dropped at a saving of F.) 

7. Starr and Stinchcombe (1992) prove a similar result. They show that if fixed costs are positive and 
variable costs are arbitrarily small, then the optimal network is a hub of size n - 1. 

8. In our working paper, we prove that, if F is zero and V is convex, the optimal network is the point- 
to-point network. We also provide examples which establish that, if F is positive and V(Q,Q') is convex, then 
very little can be said about the size and structure of the optimal network. 
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The proof is based upon concavity of 4. It implies that the cost of transporting a 
fixed number of individuals between two cities g and h is lowest when the g-  h travellers 
all use the same path, and that path is the inverse of the one used by the h -g travellers. 
In other words, all travellers between two cities traverse the same sequence of direct 
connections. 

The next step consists of showing that any network of size m, where m is an integer 
between n - 1 and n(n - 1)/2, cannot be optimal. To understand why this is true, suppose 
marginal costs are constant at c. In this case, the costs of servicing a city-pair market 
depends only upon the number of travellers and the number of connections that they 
travel. In particular, it does not depend upon the volume of traffic from the city-pair 
markets that may be using the route. Consequently, given any network X, network profits 
are equal to 

where kgll(X) represents the number of connections travelled by g -h travellers. It is then 
easy to show that, given any m(X) between n - 1 and n(n- 1)/2, network gross profits 
can be bounded from above by 

where n(kc) =max, [R(q) -kcq]. Furthermore, the bound is achievable by starting with a 
hub of size n - 1 and then directly connecting nz - (n - 1) non-hub city pairs. The monopol- 
ist collects n(c) from each of the 2n1 markets served by direct connections, and n(2c) from 
each of the n(n - 1)-2m markets served indirectly. The gain from adding a direct connec- 
tion is 2(n(c) -n(2c)). If it exceeds F, the optimal network is the point-to-point network; 
if it is less than F, then the hub network of size n - 1 yields higher profits than any larger 
network. 

For the concave case, we use piece-wise linear, concave functions. Given a collection 
of positive real numbers {c,),,~ and a collection of non-negative real numbers df;jieI, where 
I is a finite index set, define a piecewise-linear cost function by 

Clearly, $ J ~ ( Q )  is a concave function. 
The next lemma establishes the validity of approximating concave functions with 

piecewise-linear functions. For any network X, define 

~ , ( ~ ) = ~ ~ ~ P , A ~ ; = ~ C ~ ~ ~ R ( D ( P ~ ~ ~ > ) - C ~ = , C ~ > ~ ~ ( Q ~ ~ ~ ( P ~ A ) + Q ~ ~ ~ ( P , A ) ) . 
(3) 

If the network X possetes direct connections on which flows are zero, then it can be 
improved to a network X, the network defined by dropping the unused connections. 

Lemma 4. For any given X and any strictly increasing, ccncave cost function 4 ( ), 
there exists a piecewise-linear function +L where I =  (1, . . . ,m(X)} such that 4L(Q) 2 4 (Q) 
for any Q and IIe(X) =I14,(X). 

The proof of Lemma 4 is a standard application of the separating hyperplane theorem. 
To state the next result, we require some additional notation. Let H denote a hub of 

size n - 1, and T denote the point-to-point network. For 412(Q) =miniel {ciQ +A}, define 

II? = (n - 1)(2n(ci)-5 + (n -2)n(2ci)), 
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Notice that n(ci) is convex in ci. It is clear that Ile(H)hmaxi,,ll"nd 
Il, (T)2maxi,, ll'. Finally, for any m between n - 1 and n(n - 1)/2, define a linear combi- 
nation of l l e (H)  and ne(T) by 

We can now state the lemma. 

Lemma 5. Let X be a network such that m($)=nz where n - 1 <m <n(n - 1)/2. Then, 
I l 4 ( x ) s f i  1". 

The proof of Lemma 5 deserves a remark. Fixing the size of a network and solving 
for the optimal network within that class of networks does not yield "simple" networks. 
(Non-uniqueness is also a problem.) Moreover, the structure of the optimal network 
changes dramatically from one value of m to another. Hence, it does not seem possible 
to characterize the profit frontier for values of m in the range between n - 1 and n(n - 1)/ 
2. Lemma 5 avoids this difficulty by establishing that the gross profits of every network 
in this size range are dominated by the profits of either the hub network of size n- 1 or 
the directly connected network. 

We find this result somewhat surprising. In the concave case, marginal costs are 
decreasing in traffic densities. One might, therefore, expect the gain from an additional 
connection to decline with the number of connections, and the optimal size to depend 
upon the magnitude of the economies of density. Lemma 5 indicates that this reasoning 
is not correct. If it is optimal to add one more direct connection to the hub network, it is 
optimal to go all the way and connect every pair of cities directly. 

In Lemma 6, we establish that the gross profits of a hub of size m, where m s n -  1, 
exceeds the profits of any other network of size m. 

Lemma 6. Let (X, P, A) be an optimal configuration such that m(X) =m, where 
n- 1 Z m 2 1  and H4(X)-mF>O. Then, X i s  a hub of size n- 1. 

Lemma 6 permits a characterization of the profit frontier in the size range m s n  - 1. 
It is easy to show that the frontier is strictly convex. Adding another connection to a 
network of size m(m <n - 1) means the monopolist can service an additional 2(n1 + 1.) 
markets and lower average costs per traveller everywhere in the network. Thus, it cannot 
be optimal not to connect the network. 

Together, Lemma 5 and 6 imply that the optimal network is either a hub of size n - 1 
or a point-to-point network. Theorem 2 then provides a characterization of the conditions 
under which each network is optimal. 

3.2. Extensions 

The scope of Theorem 2 may appear somewhat limited due to the restrictive form of the 
cost function. One might plausibly argue that costs are related to the maximum flow in 
either direction on a connection rather than individual flows. The following proposition 
extends the results of Theorem 2 to a more general class of cost functions which includes 
the above specification. 
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Proposition 1. Suppose V(Q, g )  = y (f(Q, Q')), where f is convex and y(  f(Q, Q)) 
is concave in Q. Then there exists a function 4 :  %+% such that: 

(i) V(Q, Q') 2 4 (Q+ Q'), with equality holding if Q =Q', and 
(ii) 4 is positive, increasing, and concave. 

Convexity of the aggregator function f ensures that transport costs under V are at 
least as large off the diagonal as they are under (6. Theorem 2 can then be extended to 
the class of cost functions identified in Proposition 1 by noting first, that the bound 
constructed in Lemmas 5 and 6 is attainable under V and second, that it is an upper 
bound. The function f=max [Q, Q'] is convex so, given the above proposition, the results 
of Theorem 2 still apply. 

The restriction that variable costs depend upon the sum of the directional flows 
or, more generally, a convex aggregator of these flows, is essential. Suppose V(Q, Q') = 

4(Q) + 4(Q'), and 4(Q) is approximately constant over the relevant range of Q (assuming 
it is positive). Starr and Stinchcombe (1992) consider this type of cost structure. The 
optimal network in this case is often a "circle", with everyone travelling in the same 
direction around the circle. Some individuals travel more connections than necessary, but 
this is offset by having fewer directional flows-only one direction is used on each direct 
connection. In fact, the circle network minimizes the number of directional flows subject 
to the constraint that every pair of cities is connected. It is a commonly observed network 
for delivery runs, and may be appropriate for networks in which demands in the city-pair 
markets are lo* enough and the number of cities small enough that one flight in each 
direction on a direct connection is sufficient. 

In the context of Theorem 2, circle networks provide examples in which condition 
(ii) of Lemma 3 does not hold. That is, individuals in cities that are directly connected 
do not always use that connection to travel to the other city. Instead, they may use a 
more roundabout route. Hence, to extend the results of Theorem 2 to a more general class 
of cost functions, additional structure needs to be imposed.9 Unfortunately, it is difficult 
to find conditions on V which are sufficient to ensure that the optimal flow allocation 
satisfies Lemma 3 (ii). 

3.3. Arbitrage 

Theorem 2 implicitly assumes that the monopolist can perfectly discriminate across city- 
pair markets. The plausibility of this assumption depends upon the willingness of travellers 
to identify themselves correctly by purchasing a ticket in the appropriate market. Is this 
the case in the optimal networks? 

Consider the price configuration in the hub network. It is not difficult to show that 
there exist optimal prices for the direct connections which are symmetric, and that this is 
also true of optimal prices for the indirect connections. Therefore, letpD denote the optimal 
price of a flight between a non-hub city and the hub city and let p, denote the optimal 
price of a trip between two non-hub cities. 

Proposition 2. Suppose F E and~ R is concave and dzrerentiable. Then, (i) pD<pI 
and (ii) prS2pD ifprice elasticity is non-increasing. 

9. For example, if V(Q, Q') is sub-modular and concave on (Q, Q'), then it is possible to prove that the 
characterization given in Theorem 2 holds, provided it is optimal for individuals to use the direct connection 
whenever it is available (see our working paper for details). 
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Part (i) states that the price of direct flights is less than the price of a ticket between 
non-hub cities. Travellers between non-hub cities are charged more because the cost of 
transporting them is twice as high as the cost of transporting travellers between a non- 
hub city and the hub city. Given this result, anyone travelling to the hub city has no 
incentive to pretend otherwise by buying a ticket to a non-hub city and de-planing at the 
hub city. The assumption of symmetric demands is clearly crucical. 

Part (ii) states that, given a mild regularity condition on demand, the price of the 
trip between non-hub cities does not exceed twice the price of a direct flight. Thus, travellers 
between non-hub cities do not have an incentive to fly into the hub city on one ticket and 
fly out of the hub city on another ticket. Once again, the assumption that demands are 
symmetric plays an important role.'' 

There is no scope for arbitrage in point-to-point networks. As in the hub network, 
prices are symmetric. The cost of travelling on an indirect path to one's destination is at 
least twice the cost of using the direct connection. Hence, everyone purchases the direct 
ticket. 

3.4. Non-symmetric demands 

In this section we discuss the importance of the assumption of symmetric demands. To 
obtain some insights on this issue, suppose marginal costs are constant, so the network 
profit function is separable across city-pair markets. Demand conditions can differ across 
city pairs but, for notational convenience, demand in the g- h market is assumed to be 
the same as in the h - g  market. Then the gain from servicing a pair of cities with a direct 
rather than a one-stop connection is given by 

If this gain exceeds F, it is profitable for the monopolist to connect cities g and h directly. 
Thus, a lower bound on the number of direct connections in the optimal network is the 
number of city-pairs for which this condition holds. If it holds for all city-pairs, the optimal 
network is obviously a point-to-point network. 

When demand conditions are the same in every city, Agl,(c) is the same for all city- 
pairs. Consequently, either it exceeds F for every city-pair, in which case the solution is a 
point-to-point network, or for none, in which case the solution is a hub-spoke network. 
But, when demand conditions differ across cities, Agl1(c) can be less than F for some city- 
pairs and exceed Ffor other city-pairs. The optimal number of direct connections in these 
cases will lie somewhere between n- 1 and n(n- 1)/2, and depend on the pattern of 
network externalities. Furthermore, even if Agl,(c) is less than F for every city-pair, the 
optimal network is not necessarily a hub-spoke network." 

It seems that very little can be said about optimal networks if demand conditions are 
allowed to vary arbitrarily across city-pairs. However, in reality, the value of a direct 
connection is often related to the scale of the demand in the markets served, which in turn 
depends upon the sizes of the cities being connected. For example, suppose there are four 
cities and cities 1 and 2 are large, and cities 3 and 4 are small. The gains from servicing 

10. The reason why p, can be less than 2pD is because it is currently not legal to resell a ticket or a portion 
thereof. The ticket can only be used by the person to whom it is issued. 

I I .  Suppose there are four cities and the gains from directly connecting cities g and g+ 1 for g= I, 2.3 
are large relative to those of other city-pairs. In that case, ti is not difficult to show that a linear or "snake" 
network in which cities g and g+ 1 are directly connected for g= 1,2,3 can be more profitable than a hub-spoke 
network. 
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the (1-3), (1-4), (2-3) or (2-4) markets with a direct rather than a one-stop connection 
could reasonably be assumed to be the same, and less than the gains from directly connect- 
ing cities 1 and 2, but greater than those obtained from directly connecting cities 3 and 
4. An ordering of city-pair markets based on their size may enable one to establish more 
general theorems on the structure of optimal networks. We hope to investigate this issue 
in later work. 

4. HUB VERSUS POINT-TO-POINT NETWORKS 

Given a set of n cities, when is a hub more likely to occur than the point-to-point network? 
To gain some insight into this issue, it will be useful to consider a couple of examples. 

Suppose D(p) =kp-" and q5 (Q+ Q') =c(Q +Q'), where c, k >0 and a > 1. Then opti- 
mal prices in the hub network are given by 

Indirect travellers pay twice as much as the direct travellers. Optimal prices in the point- 
to-point network are p,, since marginal costs are constant. 'Profit on each set of direct 
travellers is 

and 4 2 ~ )  on each set of indirect travellers. The value of fixed costs at which the hub and 
point-to-point networks are equally profitable is given by 

In a hub network, marginal costs in (n - 1) (n -2) markets are twice as high as they 
are in a point-to-point network. As a result, the optimal price in these markets is higher, 
and revenues are lower. The magnitude of these revenue losses depend upon the location 
and shape of the marginal revenue curve in the range between c and 2c. In the constant 
elasticity case, these losses are an increasing function of k, the sale of demand parameter, 
and a decreasing function of c. Hence, the hub is the preferred network when demand is 
low and marginal costs are high. 

The latter property is not general, since it relies upon demand being unbounded a s p  
approaches zero. If j is finite, as we assumed earlier, then A(c) is equal to zero when 
marginal costs are zero. This implies that A(c) is not monotonic. For example, suppose 
demand is linear, D(p) =k-p for O s p s k .  Optimal prices in the hub network for 
c <k/2 are 

(If c exceeds k, no one travels, and if c lies between k and k/2, no one travels between 
non-hub cities.) In the point-to-point network, optimal prices are equal to pD. Given these 
prices, each set of direct travellers generate profits of (k- c)'/4, and each set of direct 
travellers in a hub network generate profits of (k -2c)'/4. The two networks are equally 
profitable when fixed costs are equal to 

Thus, for a fixed F, a hub may be optimal at low and high values of c, but not at 
intermediate values. 
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5. CONCLUSION 

The conditions identified in this paper as sufficient for the optimality of hub-spoke net- 
works appear to describe costs in the airline industry. To that extent, our analysis confirms 
the wide-spread belief that economies of density can explain the emergence of hub-spoke 
networks as the network of choice for U.S. air carriers in the post-regulation era. It is 
also important to note the strength of the result. Small perturbations of the symmetric 
model will not cause the optimal network to change dramatically. It suggests that, even 
when there is significant variation in sizes of cities or distances across city-pairs, the effects 
on the network may be local." For example, cities whose locations involve too much 
"backtracking" or whose sizes are quite large may be directly connected. Small cities may 
be placed one stop away from the hub. But, most of the cities will be connected through 
a hub-spoke network. 

We have not examined other reasons for hub-spoke networks. Some analysts argue 
that the high traffic densities of hub-spoke networks permits an airline to offer more 
frequent service between cities. This is in turn allows the airline to attract more business 
travellers, who desire scheduling flexibility and are willing to pay for it. For example, 
Morrison and Winston (1986) report that a doubling of the frequency of air service would 
lead to a 21% increase in the demand for air service by business travellers. By comparison, 
the increase in demand by pleasure travellers was only 5%. Other analysts argue that hub- 
spoke networks are a consequence of the strategic interacion between firms. Both of these 
explanations deserve to be studied. 

APPENDIX 

Proof of h m a  1. Notice that the bound is attained by a hub of size m. To prove that this is an upper 
bound we proceed by induction. The claim is obviously true when m= 1. Now suppose the claim is true for m= 
r- 1. Then, for the bound to be attained when m=r, we need first to show that all the cities in the network 
must be connected, that is, X(g, h) = 1 and X(gl, It') = 1 implies that cities g, h, g', and It' are connected. 

Decompose N into a collection of disjoint subsets, {N,), such that for any IteN,, X(A, g)=O for any ~ B N , ,  
and let r, denote the number of direct connections in N,.Now suppose r,<r for every s. Then, since 

';=r, x3rS+2x3C,srrsr,,,=2, which implies x r,(r,+ 1) +2z,x.,sr,r,.=r(r+ I). Hence, r,(r,+ I) 
<r(r+ I), which is a contradiction. 

Next we show that the maximum number of connected city pairs cannot be larger than r(r+ I). If it is, 
the number of connected cities is u> r + 1. Take a pair of cities (g, h) such that X(g, h) = 1 and consider a network 
X' which is obtained from X by setting X(g, 11')=0 for all h'eN, and X'(h, k')= 1 if X(g, h') = I, k'#h, and 
leaving all other connections unchanged. As x,. x8,,. X(g, h') s r - 1 and X connects u- I cities to one another, 
a contradiction is obtained. 11 

Proof of Len~rna 2. Let X be a connected network such that m(X) = n - I. Sufficiency is obvious. To 
prove necessity, we will show that if X is not a hub, then some Lghcontains only paths consisting of at least 
three direct connections. 

First, it is easy to show that since Xis connected and in(X)=n- 1, Lghis a singleton set for all pairs (g,It). 
Suppose now that X is not a hub. Then, there is a city It and a set I =  {geN: X(g, /I)= I)  such that 

26/11 <n-  1. Since all city pairs are connected, there is a city ~ B I ,  gfIt, and a city h1eIsuch that X(g, h')= 1. 
Consider a city g'eZ/It'. Then, X(gf, h) =X(k, h') =X(/tf, g) = I .  Since L8., is unique, the claim follows. 

Proof of k m m a  3. First, notice that an optimal allocation of flows always exists. Now, suppose that the 
claim (i) is not true. Then, there exist two positive quantities (S and (F and two collections {d,}:,~ and {&$-I 

12. In the language of graph theory, there is no "ripple" effect. 
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such that 

and 

with at  least one strict inequality. However, the concavity of 4 implies that 

and 

for any t. A contradiction is then obtained by simple calculations. Claims (ii) and (iii) are proved in a similar 
fashion. 11 

Proof of Lemma 5. First, choose a solution (P, A) to (3) such that A satisfies Lemma 3. Now, consider 
a piecewise-linear function gL(Q) for which Lemma 4 holds. Now, construct a collection {p,)ipl, where 
p , ~ { 0 ,11, as follows. For any pair (g,  11) for which X(g, Ii)=O and L,,,+4, choose the path aaLcl, such that 
Aglr(a)= I ,  where a = {n ,,n2,. . ,nz) .Then, set p, = I if and only if the pair (g,k) is connected indirectly by a 
path for which the initial connection is indexed by i and final connection is indexed by j. Notice that (iii) in 
Lemma 3 implies that there is a one-to-one relationship between a pair of connections i and j for which p,= 1 
and a city pair (g, It). All the remaining p, are set equal to zero. 

We now construct an upper bound for II,,(X) by considering for each indirect connection only the cost 
incurred for the initial and final connection. Thus, 

Since n(c,) is convex in ci we have 

Notice that since A satisfies Lemma 3, pv=pji, Ci je lp i jSn(n-  1)-2m and C j E I p u 6 n - 2 for any i,j ~ l .  
Now define ai=Cje,p,il(n- 2). Thus, ( A l )can be rewritten as 

Since (11- 1)-"maxi II:'?n-'(n - 1)-'2 maxi I'I; and Cis,a i s  (n(n - 1)-2nr)(n-2)-', then 

where P =(n(n- 1)-2m)(n-2)-'. (1 

Proof of Lemma 6. First notice that, since (X ,P, A) is an optimal configuration, x=%Now define 4,. 
as in Lemma 5 and consider a collection {p,),,, such that p,=O if i=j  and p,= I otherwise. By Lemmas 1,3 
and 4, it follows that TI,(X) $Cis, (2n(ci) -5 )  +cijelp,n(ci+ cj). The convexity of n(ci) implies 

where H, is a hub of size nt. It is easy to show that lT,(H,,,)-mF>O implies that lT,(H,,)-mF is strictly 
increasing in m for nt S n  - 1.  Therefore, m ( X )=n- 1 .  

To prove uniqueness, suppose Xi s  not a hub and m ( X )  =n-  I .  Then, (A2) implies that II,(X) =maxi,, 
lT7 and II+(X) for all i. Since IT,(X) -mF>O, it follows that n(2ci)>0 for all i. Otherwise, the point-to- 
point network would attain strictly higher profits. Hence, n(ci+cj)>O for all i,j,  which implies that 
n(ci+cj)>n(ci+cj+c,) for any i,j, z .  Therefore, by Lemmas 2,3  and 4 it follows that lTo(X)<CiE, 
(2x(ci) -A) +CiJeIp$(ci+cj) slT,(H). A contradiction. (1 

Proof of Tlteorern 2. Define A =2(n- 1)--'(n-2)-.'(l16( T )-ll, (H)) as the level of fixed costs at which 
the net profits of the hub and point-to-point networks are equal. If FEFA,it follows from Lemma 5 that, for 
n- l<m(X)<n(n -  1)/2 
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n+(X) -ttfF<n,(T)-n(n- I)F/2. 

Since n ( F )  >0, it follows by Lemma 6 that if X is an optimal network for which m(X) l n  - I, X=  H. Since 

n+(T)  -n(n- 1)F/2>nm(H)- (n- l ) F  

part (i) of the theorem follows. Part (ii) is proved by a similar argument. 11 

Proof of Proposifion 1. Using symmetry of V and convexity off,  we obtain the relation 

V(Q7 Q')2 w(f((Q+ Q',/s(Q+ Qf)/2,). 

Define +(Q) = V(Q/2, Q/2). Then Part (i) follows immediately. Part (ii) follows directly from the properties of 
V ( . , . ) .  I1 

Proof of Proposition 2. The first-order conditions to the profit maximization for the hub yields the 
equation R1(qr) =2R1(qD)>0, where q,=D(p,) and q, =D(pD). Concavity of R implies q,<q,, and hence, that 
PI>PD. 

To prove part (ii), recall that R1(q) =P(q)(l + ~ ( q ) ) ,where s(q) =qP(q)/P(q) is the price elasticity. Rewrit- 
ing the first-order condition yields 

Since s(q) is non-increasing, this implies p r z  2pD. 11 
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